Saturday, 21 September 2019

HUUBUNGAN DAN FUNGSI DALAM MATEMATIKA


HUBUNGAN (Relasi)

Relasi yaitu hubungan antara anggota pada suatu himpunan dengan anggota himpunan yang lainya. Relasi dari himpunan A ke himpunan B ialah menghubungkan anggota-anggota himpunan A pada anggota-anggota himpunan B.


Cara Menyatakan Relasi: 

1. Diagram Panah

Diagram panah itu merupakan sebuah diagram yang digunakan untuk menunjukkan hubungan antara himpunan awal ( domain ) dengan himpunan tujuan ( codomain ) yang diumpamakan dengan tanda panah.



   


2. Diagram Cartesius

Diagram Cartesius merupakan diagram yang terdiri dari sumbu X dan sumbu Y. Pada diagram kartesius, anggota himpunan P terletak pada sumbu x, sedangkan anggota himpunan Q terletak pada sumbu y Relasi yang menghubungkan himpunan P dan Q ditunjukkan dengan noktah ataupun titik.




3. Himpunan Pasangan Berurutan

Sebuah relasi yang menghubungkan himpunan yang satu dengan himpunan lainnya bisa disajikan pada bentuk himpunan pasangan berurutan. Cara penulisannya yaitu anggota himpunan P ditulis pertama, sedangkan anggota himpunan Q menjadi pasangannya.
Contoh :
{(Rani, basket)}, {(Rani, bulu tangkis)}, {(Dian, basket)}, {(Dian, atletik)}, {(Isnie, senam)}, {(Dila, basket)}, {(Dila, tenis meja)}

JENIS JENIS RELASI:

1. Relasi Invers

Misalkan R adalah relasi dari himpunan A ke himpunan B. Invers dari R yang dinyatakan dengan relasi dari B ke A yang mengandung semua pasangan terurut yang apabila dipertukarkan masih termasuk dalam R. Ditulis dalam notasi himpunan sebagai berikut ; R-1= {(b,a) : (a,b)R}
Contoh:
A = {1,2,3} B = {x,y}
R = {(1,x), (1,y), (3,x)} relasi dari A ke B
R-1= {(x,1), (y,1), (x,3)} relasi invers dari B ke A


2. Relasi Simetrik

Misalkan R = (A, B, P(x,y)) suatu relasi. R disebut relasi simetrik, jika tiap (a,b)R berlaku (b,a)R. Dengan istilah lain, R disebut juga relasi simetrik jika a R b berakibat b R a.
Contoh Relasi Simetrik :
perhatikan satu per satu. Setiap kali kamu menemukan pasangan, misalnya (a, b), maka cari apakah (b, a) juga ada. Kalau ternyata tidak ada, pasti relasi itu tidak simetrik.



3. Relasi Refleksif

Misalkan R = (A, A, P(x,y)) suatu relasi. R disebut relasi refleksif, jika setiap A berlaku (a,a)R. Dengan kata lain, R disebut relasi refleksif jika tiap-tiap anggota pada A berelasi dengan dirinya sendiri
Contoh :
Relasi Refleksif Diketahui A = {1, 2, 3, 4} dan R = {(1,1), (2,3), (3,3), (4,2), (4,4)} Apakah R relasi refleksif ? R bukan relasi refleksif, karna (2,2) tidak termasuk dalam R. Jika (2,2) termasuk dalam R, yaitu R1= {(1,1), (2,2), (2,3), (3,3), (4,2), (4,4)} maka R1 merupakan relasi refleksif.


4. Relasi anti Simetrik

Suatu relasi R bisa disebut relasi anti simetrik andai (a,b)R dan (b,a)R maka a=b. Dengan kata lain Jika a, b A, a≠b, maka (a,b)R atau (b,a)R, tetapi tidak kedua-duanya.
Contoh :
Misalkan R suatu relasi pada himpunan bilangan asli yang didefinisikan “y habis dibagi oleh x”, maka R merupakan relasi anti simetrik sebab jika b habis dibagi a dan a habis dibagi b, maka a = b.
Misalkan A = {1, 2, 3} dan R1= {(1,1), (2,1), (2,2), (2,3), (3,2)}, maka R1bukan relasi anti simetrik, sebab (2,3)R1dan (3,2)R1.


5. Relasi Transitif

Misalkan R relasi dalam himpunan A. R disebut relasi transitif jika berlaku ; (a,b)R dan (b,c)R maka (a,c)R. Dengan kata lain andai a berelasi dengan b dan b berelasi dengan c, maka a berelasi dengan c.
Contoh :
Misalkan A = {a, b, c} dan R = {(a,b), (a,c), (b,a), (c,b)}, maka R bukan relasi transitif, sebab (b,a)R dan (a,c)R tetapi (b,c)R. dilengkapi agar R menjadi relasi transitif R = {(a,a), (a,b), (a,c), (b,a), (b,b), (b,c), (c,a), (c,b), (c,c)}


FUNGSI 
Fungsi dalam matematika adalah suatu relasi yang menghubungkan setiap anggota x dalam suatu himpunan yang disebut daerah asal (Domain) dengan suatu nilai tunggal f(x) dari suatu himpunan kedua yang disebut daerah kawan (Kodomain). Himpunan nilai yang diperoleh dari relasi tersebut disebut daerah hasil ( Range).




Sifat Fungsi dalam Matematika:

1. Fungsi Injektif

Sifat fungsi yang pertama adalah injektif atau juga disebut fungsi satu-satu. Secara harfiah mungkin belum bisa kita pahami secara gamblang. Nah, untuk lebih mudah memahamkan sifat fungsi ini, kami contohkan kepada anda, misal fungsi f menyatakan A ke B maka fungsi f disebut suatu fungsi satu-satu (injektif), apabila setiap dua elemen yang berlainan di A akan dipetakan pada dua elemen yang berbeda di B. Selanjutnya secara singkat dapat dikatakan bahwa f:A→B adalah fungsi injektif apabila a ≠ b berakibat f(a) ≠ f(b) atau ekuivalen, jika f(a) = f(b) maka akibatnya a = b.

2. Fungsi Surjektif

Fungsi f: A → B disebut fungsi kepada atau fungsi surjektif jika dan hanya jika untuk sembarang b dalam kodomain Bterdapat paling tidak satu a dalam domain A sehingga berlaku f(a) = b. Dengan kata lain, suatu kodomain fungsi surjektif sama dengan kisarannya (range).
3. Fungsi Bijektif
Sifat fungsi matematika yang terakhir ada;ah bijektif. Suatu pemetaan f: A→B sedemikian rupa sehingga f merupakan fungsi yang injektif dan surjektif sekaligus, maka dikatakan “f adalah fungsi yang bijektif” atau “ A dan B berada dalam korespondensi satu-satu.

Jenis-jenis Fungsi dalam Matematika

1. Fungsi Linear

Jenis pertama adalah fugsi linear. Fungsi pada bilangan real yang didefinisikan : f(x) = ax + b, a dan b konstan dengan a ≠ 0 disebut fungsi linear.

2. Fungsi Konstan

Untuk lebih memudahkan anda untuk memahami jenis fungsi yang kedua ini, kami berikan contoh. Misal f:A→B adalah fungsi di dalam A maka fungsi f disebut fugsi konstan jika dan hanya jika jangkauan dari f hanya terdiri dari satu anggota.

3. Fungsi Identitas

Jenis fungsi berikutnya adalah fungsi identitas. Contoh: f:A→B adalah fungsi dari A ke B maka f disebut fungsi identitas jika dan hanya jika range f = kodomain atau f(A)=B.

4. Fungsi Kuadrat

Jenis fungsi matematika yang terakhir adalah fungsi kuadrat. Fungsi f: R→R yang ditentukan oleh rumus f(x) = ax2 + bx + c dengan a,b,c ∈ R dan a ≠ 0 disebut fungsi kuadrat.







No comments:

Post a Comment

Tugas Kewirausahaan

Misi Individu :  Menjadi seorang konsultan gizi Tujuan umum/strategik : Mempelajari seputar gizi atau makanan yang akan diberikan kepada s...