Saturday, 14 September 2019

ELEMEN,  HIMPUNAN, dan BILANGAN  dalam MATEMATIKA 


ELEMEN 

Elemen atau anggota (bahasa Inggrismember) dari suatu himpunan dalam matematika adalah objek-objek matematika tertentu yang membentuk himpunan itu.



 HIMPUNAN

Himpunan adalah (kumpulan objek yang memiliki sifat yg dapat didefinisikan dengan jelas) segala koleksi benda-benda tertentu yang dianggap sebagai satu kesatuan. Walaupun hal ini merupakan ide yang sederhana, tidak salah jika himpunan merupakan salah satu konsep penting dan mendasar dalam matematika modern, dan karenanya, studi mengenai struktur kemungkinan himpunan dan teori himpunan, sangatlah berguna.








Berikut istilah-istilah penting yang ada di Himpunan:

1. Kardinalitas
    Pertama adalah Kardinalitas . Kardinalitas dari sebuah himpunan dapat diartikan sebagai ukuran banyaknya elemen yang dikandung oleh himpunan tersebut.Kardinalitas sendiri memiliki pengertian yaitu himpunan bilangan yang menunjukkan banyaknya Jumlah Anggota. Jumlah unsur dalam suatu himpunan dinamakan kardinalitas dari himpunan tersebut. untuk menyatakan banyaknya anggota yang berbeda dalam suatu himpunan menggunakan notasi n. 
Contohnya adalah tentukan banyaknya anggota himpunan A= { Huruf pembentuk kata “cermat“ } . Berarti kamu menjawabnya dengan cara n(A) = 6.




2. Himpunan Semesta  
Pengertian dan Definisi Himpunan Semesta. Himpunan semesta disebut juga semesta pembicaraan. Himpunan semesta atau semesta pembicaraan adalah himpunan yang memuat semua anggota atau objek himpunan yang dibicarakan. Himpunan semesta (semesta pembicaraan) biasanya dinyatakan dengan notasi S. Cara termudah dalam menyatakan himpunan semesta atau semesta pembicaraan adalah dengan menggunakan diagram Venn. Dengan diagram Venn segala operasi himpunan yang terjadi dalam himpunan semesta dapat digambarkan. Operasi himpunan yang mungkin terjadi dalam sebuah semesta pembicaraan antara lain adalah:
a. Himpunan bagian ( ⊂ )
Himpunan bagian adalah himpunan yang menjadi anggota himpunan lainnya yang masih merupakan bagian dari semesta pembicaraan. Contohnya himpunan bagian adalah: Jika S = {P, A, B}, P = {A, B}, dan B = {A}  atau bisa juga di tuliskan A ⊂ B ⊂ P ⊂ S. Dengan diagram Venn contoh soal di atas dapat digambarkan seperti pada gambar disamping.
[diagram%2520venn%2520himpunan%2520bagian%255B5%255D.jpg]
bIrisan Himpunan ( \cap )
Irisan himpunan atau intersection adalah anggota suatu himpunan yang juga menjadi anggota himpunan lain. Contoh irisan himpunan adalah: jika S = {A, B} A = {1, 2, 3, 4, 5} dan B = {2, 4, 6, 8, 10 } atau bisa di tuliskan dengan notasi pembentuk himpunan S = {A, B} dan B \cap A = {2, 4}. Dengan diagram Venn Irisan himpunan dapat digambarkan seperti pada gambar disamping. Irisan himpunan adalah daerah yang berwarna kelabu.
[irisan%2520himpunan%255B5%255D.jpg]
cGabungan Himpunan (  \cup )
Gabungan Himpunan adalah pengabungan dua himpunan yang berbeda karena memiliki anggota yang sama. Contohnya: Jika S = {P, Q}  P = { p, i, s, a, u} Q = { s, i, p, a, u} karena memiliki anggota yang sama maka kedua himpunan tadi dapat dituliskan dengan notasi P  \cup Q, dapat digambarkan dengan diagram venn seperti disamping ini.
[gabungan%2520himpunan%255B5%255D.jpg]





3. Himpunan Kosong
Himpunan kosong artinya himpunan yang tidak mempunyai anggota. Himpunan kosong ditulis dengan notasi atau simbol { } atau ∅. Contohnya yaitu jika kamu disuruh untuk menyebutkan nama hari yang berawalan dari huruf z, tetapi tidak ada jawabannya karena tidak ada hari yang berawalan huruf z. Berati itu termasuk himpunan kosong. Dijawab seperti ini yaa: n(E) = { } atau n(E) = ∅. Tapi ingat ya Squad, jangan menuliskan himpunan kosong dengan cara n(E) = {0}. Ini salah ya! Ini karena {0} mempunyai anggota yaitu 0, bukan himpunan kosong.

pengertian dan istilah himpunan



 BILANGAN

Image result for bilangan matematika
#BILANGAN ASLI
Bilangan asli adalah himpunan bilangan bulat positif yang bukan nol.
Nama lain dari bilangan ini adalah bilangan hitung atau bilangan yang bernilai positif (integer positif).
Contoh :
{1, 2, 3, 4, 5, 6, 7, 8, 9, ...}

#BILANGAN CACAH
Bilangan cacah adalah himpunan bilangan asli ditambah dengan nol.
Contoh :
{0, 1, 2, 3, 4, 5, 6, 7, 8, ...}

#BILANGAN NEGATIF
Bilangan negatif
(integer negatif) adalah bilangan yang lebih kecil/ kurang dari nol. Atau juga bisa dikatakan bilangan yang letaknya disebelah kiri nol pada garis bilangan.
Contoh :
{-1, -2, -3, -4, -5, -6, -7, -8, -9, ...}

#BILANGAN BULAT
Bilangan bulat merupakan bilangan yang terdiri dari bilangan asli, bilangan nol dan bilangan negatif.
Contoh :
{-4, -3, -2, -1, 0, 1, 2, 3, 4, ...}

#BILANGAN PRIMA
Bilangan prima adalah bilangan asli lebih besar dari 1 yang faktor pembaginya adalah 1 dan bilangan itu sendiri.
Contoh :
{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ...}

#BILANGAN KOMPOSIT
Bilangan komposit adalah bilangan asli lebih besar dari 1 yang bukan merupakan bilangan prima. Bilangan komposit dapat dinyatakan sebagai faktorisasi bilangan bulat, atau hasil perkalian dua bilangan prima atau lebih. Atau bisa juga disebut bilangan yang mempunyai faktor lebih dari dua.
Contoh :
{4, 6, 8, 9, 10, 12, 14, 15, 16, 18, …}

#BILANGAN KOMPLEKS
Bilangan kompleks adalah
suatu bilangan yang merupakan penjumlahan antara bilangan real dan bilangan imajiner atau bilangan yang berbentuk a + bi. Dimana a dan b adalah bilangan real, dan i adalah bilangan imajiner tertentu. Bilangan real a disebut juga bagian real dari bilangan kompleks, dan bilangan real b disebut bagian imajiner. Jika pada suatu bilangan kompleks, nilai b adalah 0, maka bilangan kompleks tersebut menjadi sama dengan bilangan real a.
Contoh :
{3 + 2i}

#BILANGAN IMAJINER
Bilangan imajiner adalah bilangan yang mempunyai sifat i2 = −1. Bilangan ini merupakan bagian dari bilangan kompleks. Secara definisi, bilangan imajiner i ini diperoleh dari penyelesaian persamaan kuadratik :
   x2 + 1 = 0
atau secara ekuivalen
 
   x2 = -1
atau juga sering dituliskan sebagai

   x = √-1


#BILANGAN REAL
Bilangan real atau bilangan riil
menyatakan bilangan yang dapat dituliskan dalam bentuk decimal, seperti 2,86547… atau 3.328184. Dalam notasi penulisan bahasa Indonesia, bilangan desimal adalah bilangan yang memiliki angka di belakang koma “,” sedangkan menurut notasi ilmiah, bilangan desimal adalah bilangan yang memiliki angka di belakang tanda titik “.”. Bilangan real meliputi bilangan rasional, seperti 42 dan −23/129, dan bilangan irrasional, seperti π dan √2, dan dapat direpresentasikan sebagai salah satu titik dalam garis bilangan.
Himpunan semua bilangan riil dalam matematika dilambangkan dengan (berasal dari kata “real”).

#BILANGAN IRRASIONAL
Bilangan irrasional merupakan bilangan real yang tidak bisa dibagi atau lebih tepatnya hasil baginya tidak pernah berhenti. Sehingga tidak bisa dinyatakan a/b.
Contoh :
π      =          3,141592653358…….. 
√2    =          1,4142135623……..
e      =          2,71828281284590…….

#BILANGAN RASIONAL
Bilangan rasional adalah bilangan-bilangan yang merupakan rasio (pembagian) dari dua angka (integer) atau dapat dinyatakan dengan a/b, dimana a merupakan himpunan bilangan bulat dan b merupakan himpunan bilangan bulat tetapi tidak sama dengan nol. Bilangan  Rasional  diberi lambang (berasal dari bahasa Inggris “quotient”).
Contoh :
{½, ⅓, ⅔, ⅛, ⅜, ⅝, ⅞, ...}

Bilangan pecahan termasuk sekumpulan bilangan rasional. Pecahan desimal adalah pecahan-pecahan dengan bilangan penyebut 10, 100, dst. { 1/10, 1/100, 1/1000 }, semua bilangan ini dapat ditemukan dalam garis-garis bilangan.

Sebuah bilangan asli dapat dinyatakan dalam bentuk bilangan rasional. Sebagai contoh bilangan asli  2 dapat dinyatakan sebagai 12/6 atau 30/15 dan sebagainya.

#BILANGAN PECAHAN
Bilangan pecahan adalah bilangan yang disajikan/ ditampilkan dalam bentuk a/b; dimana ab bilangan bulat dan b ≠ 0.
a disebut pembilang dan b disebut penyebut.

#BILANGAN GENAP
Bilangan Genap adalah bilangan bulat yang habis dibagi dua.
Contoh : Bilangan 2, 4, 6, 8, 10, 14, 20,… dll.
#BILANGAN GANJIL
Bilangan Ganjil adalah bilangan bulat yang tidak habis dibagi dua.
Contoh : Bilangan 1, 3, 5, 7, 11, 17, 21, 31,… dll.

No comments:

Post a Comment

Tugas Kewirausahaan

Misi Individu :  Menjadi seorang konsultan gizi Tujuan umum/strategik : Mempelajari seputar gizi atau makanan yang akan diberikan kepada s...